- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Corotan, Austin (1)
-
Hutchinson, Brian (1)
-
Kravitz, Ben (1)
-
Link, Robert (1)
-
Weber, Theodore (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract. We investigate techniques for using deep neural networks to produce surrogatemodels for short-term climate forecasts. A convolutional neural network istrained on 97 years of monthly precipitation output from the 1pctCO2 run (theCO2 concentration increases by 1 % per year) simulated by the second-generation Canadian Earth System Model (CanESM2). The neural network clearly outperforms a persistence forecast anddoes not show substantially degraded performance even when the forecast lengthis extended to 120 months. The model is prone to underpredicting precipitationin areas characterized by intense precipitation events. Scheduled sampling(forcing the model to gradually use its own past predictions rather than groundtruth) is essential for avoiding amplification of early forecasting errors.However, the use of scheduled sampling also necessitates preforecasting(generating forecasts prior to the first forecast date) to obtain adequateperformance for the first few prediction time steps. We document the trainingprocedures and hyperparameter optimization process for researchers who wish toextend the use of neural networks in developing surrogate models.more » « less
An official website of the United States government
